Product Preview

Transient Voltage Suppressor Diode Array

SOT-23 Dual Common Anode Zeners for ESD Protection

These dual monolithic silicon zener diodes are designed for applications requiring transient overvoltage protection capability. They are intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems, medical equipment and other applications. Their dual junction common anode design protects two separate lines using only one package. These devices are ideal for situations where board space is at a premium.

Features

- SOT–23 Package Allows Either Two Separate Unidirectional Configurations or a Single Bidirectional Configuration
- Working Peak Reverse Voltage Range 12 V
- Peak Power 450 W (8 X 20 us)
- Low Leakage
- Flammability Rating UL 94 V-0
- ESD Rating:

IEC 61000–4–2 (ESD) 15 kV (air) 8 kV (contact)

IEC 61000-4-4 (EFT) 50 A (5 x 50 ns)

IEC 61000–4–5 (Lighting) 12 A (8 x 20 μs)

- Human Body Model Up to 16 kV
- Machine Model Up to 400 V
- Pb-Free Package is Available

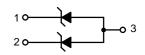
Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic case

FINISH: Corrosion resistant finish, easily solderable

MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:

260°C for 10 Seconds


Package designed for optimal automated board assembly Small package size for high density applications

ON Semiconductor®

http://onsemi.com

PIN 1. CATHODE 2. CATHODE 3. ANODE

SOT-23 CASE 318 STYLE 12

MARKING DIAGRAM

12N = Device Code

M = Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
SM12AT1	SOT-23	3000/Tape & Reel
SM12AT1G	SOT-23 (Pb-Free)	3000/Tape & Reel

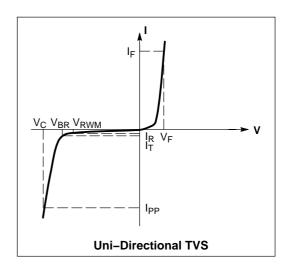
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation @ 20 μs @ T _L ≤ 25°C (Note 1)	P _{pk}	450	W
IEC 61000–4–2 (ESD) Air Contact		±15 ±8.0	kV
IEC 61000-4-4 (EFT)		50	А
IEC 61000-4-5 (Lightning)		12	Α
Total Power Dissipation on FR-5 Board (Note 2) @ T _A = 25°C Derate above 25°C Thermal Resistance Junction–to–Ambient	P _D R _{θJA}	225 1.8 556	mW mW/°C °C/W
Total Power Dissipation on Alumina Substrate (Note 3) @ T _A = 25°C Derate above 25°C Thermal Resistance Junction–to–Ambient	P _D R _{θJA}	300 2.4 417	mW mW/°C °C/W
Junction and Storage Temperature Range	T _J , T _{stg}	- 55 to +150	°C
Lead Solder Temperature – Maximum (10 Second Duration)	TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Non–repetitive current pulse per Figure 3


- 2. $FR-5 = 1.0 \times 0.75 \times 0.62$ in.
- 3. Alumina = $0.4 \times 0.3 \times 0.024$ in., 99.5% alumina
- *Other voltages may be available upon request

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or 2 and 3)

Symbol	Parameter				
I _{PP}	Maximum Reverse Peak Pulse Current				
V _C	V _C Clamping Voltage @ I _{PP}				
V _{RWM} Working Peak Reverse Voltage					
I _R	Maximum Reverse Leakage Current @ V _{RWM}				
V_{BR}	Breakdown Voltage @ I _T				
I _T	Test Current				
ΘV_{BR}	Maximum Temperature Coefficient of V _{BR}				
I _F	Forward Current				
V _F	Forward Voltage @ I _F				
Z _{ZT}	Maximum Zener Impedance @ I _{ZT}				
I _{ZK}	Reverse Current				
Z_{ZK}	Maximum Zener Impedance @ I _{ZK}				

ELECTRICAL CHARACTERISTICS

				V _{BR} , Breakdown Voltage			V _C @ I _{PP} = 1 A	Max Ipp	Typical Capacitance
		V _{RWM}	I _R @ V _{RWM}	(Vo	lts)	ŀT	(Note 4)	(Note 4)	(pF)
Device	Device Marking	(Volts)	(μΑ)	Min	Max	mA	(Volts)	(Amps)	Pin 1 to 3 @ 0 V
SM12AT1	12N	12	1.0	13.3	15.75	1.0	19	18	120

4. $8 \times 20 \mu s$ pulse waveform per Figure 3

TYPICAL CHARACTERISTICS

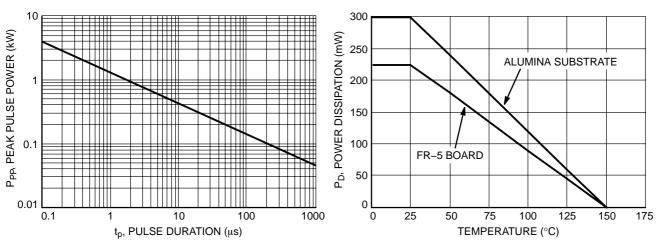
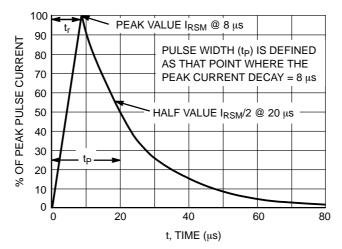
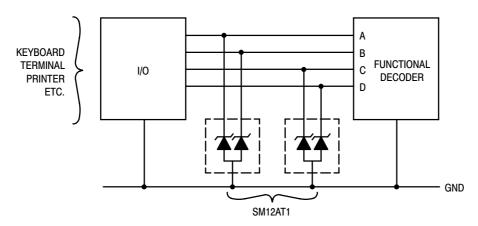


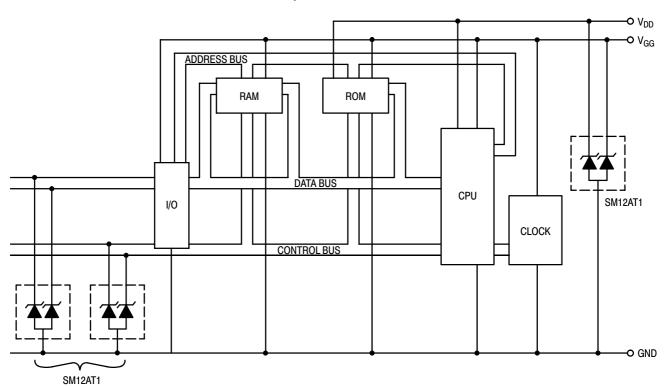
Figure 1. Non-Repetitive Peak Pulse Power versus Pulse Time

Figure 2. Steady State Power Derating Curve



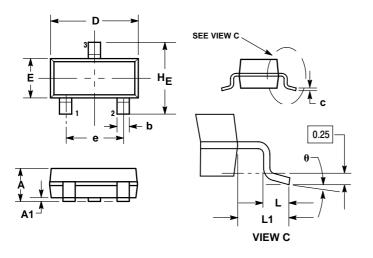

Figure 3. $8\times 20~\mu s$ Pulse Waveform

TYPICAL COMMON ANODE APPLICATIONS


A quad junction common anode design in a SOT-23 package protects four separate lines using only one package. This adds flexibility and creativity to PCB design especially

when board space is at a premium. Two simplified examples of TVS applications are illustrated below.

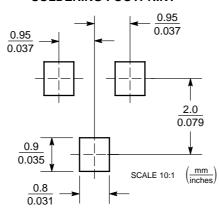
Computer Interface Protection



Microprocessor Protection

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AN**


NOTES

- 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. CONTROLLING DIMENSION: INCH
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 318-01 THRU -07 AND -09 OBSOLETE, NEW
- STANDARD 318-08.

	М	ILLIMETE	RS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.89	1.00	1.11	0.035	0.040	0.044	
A1	0.01	0.06	0.10	0.001	0.002	0.004	
b	0.37	0.44	0.50	0.015	0.018	0.020	
С	0.09	0.13	0.18	0.003	0.005	0.007	
D	2.80	2.90	3.04	0.110	0.114	0.120	
E	1.20	1.30	1.40	0.047	0.051	0.055	
е	1.78	1.90	2.04	0.070	0.075	0.081	
L	0.10	0.20	0.30	0.004	0.008	0.012	
L1	0.35	0.54	0.69	0.014	0.021	0.029	
HE	2.10	2.40	2.64	0.083	0.094	0.104	

- STYLE 12: PIN 1. CATHODE 2. CATHODE
 - ANODE

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ltc (SCILLC) solicit eserves the inject that changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative